- · 《中国组织工程研究》栏[05/29]
- · 《中国组织工程研究》数[05/29]
- · 《中国组织工程研究》收[05/29]
- · 《中国组织工程研究》投[05/29]
- · 《中国组织工程研究》征[05/29]
- · 《中国组织工程研究》刊[05/29]
干细胞来源外泌体修复周围神经损伤的效应(6)
作者:网站采编关键词:
摘要:[22] BANG C, THUM T. Exosomes: new players in cell-cell J Biochem Cell Biol. 2012;44(11):2060-2064. [23] SKOTLAND T, SANDVIG K, LLORENTE A. Lipids in exosomes: Current knowledge and the way forward. P
[22] BANG C, THUM T. Exosomes: new players in cell-cell J Biochem Cell Biol. 2012;44(11):2060-2064.
[23] SKOTLAND T, SANDVIG K, LLORENTE A. Lipids in exosomes: Current knowledge and the way forward. Prog Lipid Res. 2017;66:30-41.
[24] FAMILTSEVA A, JEREMIC N, TYAGI SC. Exosomes: cell-created drug delivery systems. Mol Cell Biochem. 2019;459(1-2):1-6.
[25] COLOMBO M, RAPOSO G, THéRY C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular Rev Cell Dev Biol. 2014;30:255-289.
[26] ABDIK H, AVSAR ABDIK E, HIZLI DENIZ AA, et al. A Novel Virtue in Stem Cell Research: Exosomes and Their Role in Differentiation. Adv Exp Med Biol. 2019;1144:133-146.
[27] ZHOU W, LIN J, ZHAO K, et al. Single-Cell Profiles and Clinically Useful Properties of Human Mesenchymal Stem Cells of Adipose and Bone Marrow Origin. Am J Sports Med. 2019;47(7):1722-1733.
[28] YANG D, LI N, ZHANG G. Spontaneous adipogenic differentiation potential of adipose-derived stem cells decreased with increasing cell passages. Mol Med Rep. 2018;17(4):6109-6115.
[29] SOWA Y, IMURA T, NUMAJIRI T, et al. Adipose-derived stem cells produce factors enhancing peripheral nerve regeneration: influence of age and anatomic site of origin. Stem Cells Dev. 2012;21(11):1852-1862.
[30] HENDRIJANTINI N, HARTONO P. Phenotype Characteristics and Osteogenic Differentiation Potential of Human Mesenchymal Stem Cells Derived from Amnion Membrane (HAMSCs) and Umbilical Cord(HUC-MSCs). Acta Inform Med. 2019;27(2):72-77.
[31] LUDWIG N, WHITESIDE TL, REICHERT TE. Challenges in Exosome Isolation and Analysis in Health and Disease. Int J Mol Sci. 2019;20(19):4684.
[32] YANG B, CHEN Y, SHI J. Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. Adv ;31(2):e.
[33] CHEN G, HUANG AC, ZHANG W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. ;560(7718):382-386.
[34] NING Y, SHEN K, WU Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol ;199:36-43.
[35] LI SP, LIN ZX, JIANG XY, et al. Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools. Acta Pharmacol Sin.2018;39(4):542-551.
[36] FERREIRA ADF, GOMES DA. Stem Cell Extracellular Vesicles in Skin Repair. Bioengineering (Basel). 2018;6(1):4.
[37] LOU G, CHEN Z, ZHENG M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017;49(6):e346.
[38] KHAN M, NICKOLOFF E, ABRAMOVA T, et al. Embryonic stem cellderived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res.2015;117(1):52-64.
[39] DENG H, SUN C, SUN Y, et al. Lipid, Protein, and MicroRNA Composition Within Mesenchymal Stem Cell-Derived Exosomes. Cell ;20(3):178-186.
[40] LI R, ZHAO K, RUAN Q, et al. Bone marrow mesenchymal stem cellderived exosomal microRNA-124-3p attenuates neurological damage in spinal cord ischemia-reperfusion injury by downregulating Ern1 and promoting M2 macrophage polarization. Arthritis Res ;22(1):75.
[41] MEAD B, CHAMLING X, ZACK DJ, et al. TNFα-Mediated Priming of Mesenchymal Stem Cells Enhances Their Neuroprotective Effect on Retinal Ganglion Cells. Invest Ophthalmol Vis Sci. 2020;61(2):6.
[42] MCBRIDE JD, RODRIGUEZ-MENOCAL L, GUZMAN W, et al. Bone Marrow Mesenchymal Stem Cell-Derived CD63+ Exosomes Transport Wnt3a Exteriorly and Enhance Dermal Fibroblast Proliferation, Migration, and Angiogenesis In Vitro. Stem Cells Dev. 2017;26(19):1384-1398.
[43] HAN C, ZHOU J, LIANG C, et al. Human umbilical cord mesenchymal stem cell derived exosomes encapsulated in functional peptide hydrogels promote cardiac repair. Biomater Sci. 2019;7(7):2920-2933.
[44] YU B, ZHOU S, WANG Y, et al. Profile of microRNAs following rat sciatic nerve injury by deep sequencing: implication for mechanisms of nerve regeneration. PLoS One. 2011;6(9):e.
[45] CHING RC, WIBERG M, KINGHAM PJ. Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther. 2018;9(1):266.
[46] EIRIN A, RIESTER SM, ZHU XY, et al. MicroRNA and mRNA cargo of extracellular vesicles from porcine adipose tissue-derived mesenchymal stem cells. Gene. 2014;551(1):55-64.
[47] DIDIOT MC, HALL LM, COLES AH, et al. Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing. Mol Ther. 2016;24(10):1836-1847.
[48] RICHNER M, ULRICHSEN M, ELMEGAARD SL, et al. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol. 2014;50(3):945-970.
[49] MOATTARI M, KOUCHESFEHANI HM, KAKA G, et al. Evaluation of nerve growth factor (NGF) treated mesenchymal stem cells for recovery in neurotmesis model of peripheral nerve injury. J Craniomaxillofac ;46(6):898-904.
[50] BUCAN V, VASLAITIS D, PECK CT, et al. Effect of Exosomes from Rat Adipose-Derived Mesenchymal Stem Cells on Neurite Outgrowth and Sciatic Nerve Regeneration After Crush Injury. Mol ;56(3):1812-1824.
文章来源:《中国组织工程研究》 网址: http://www.zgzzgcyj.cn/qikandaodu/2021/0118/956.html